wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

How to do the 19th question


19. Find the value of cot 12 (cos-1 2x1+x2 + sin-1 1-y21+y2), x < 1, y > 0, xy < 1

Open in App
Solution

cot 12cos-1 2x1+x2 + sin-1 1-y21-y2Conditioned: x<1, y>0, xy<1This means0<y1-1<x<1Let x=tan α, α-π4,π4 and y=tan β, β(0,π4]cot 12cos-1 2x1+x2 + sin-1 1-y21+y2=cot 12cos-1 2tan α1+tan2 α + sin-1 1-tan2 β1+tan2 β=cot 12cos-1 sin 2α + sin-1 cos 2β=cot 12π2-sin-1 sin 2α +π2- cos-1 cos 2β=cot 12π-sin-1 sin 2α + cos-1 cos 2βSince 2α-π2,π2 and 2β(0,π2]Therefore, sin-1 sin 2α=2α and cos-1 cos 2β=2β=cot 12π-2α + 2β=cot π2-α + β=tan α+βSince tan α=x and tan β=y, then α=tan-1x and β=tan-1y=tan tan-1x + tan-1y=tan tan-1x+y1-xy=x+y1-xy

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon