1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
First Derivative Test for Local Maximum
How to do the...
Question
How to do the 19th question
19
.
F
i
n
d
t
h
e
v
a
l
u
e
o
f
c
o
t
1
2
(
cos
-
1
2
x
1
+
x
2
+
sin
-
1
1
-
y
2
1
+
y
2
)
,
x
<
1
,
y
>
0
,
x
y
<
1
Open in App
Solution
c
o
t
1
2
cos
-
1
2
x
1
+
x
2
+
sin
-
1
1
-
y
2
1
-
y
2
C
o
n
d
i
t
i
o
n
e
d
:
x
<
1
,
y
>
0
,
x
y
<
1
T
h
i
s
m
e
a
n
s
0
<
y
≤
1
-
1
<
x
<
1
L
e
t
x
=
tan
α
,
α
∈
-
π
4
,
π
4
a
n
d
y
=
tan
β
,
β
∈
(
0
,
π
4
]
c
o
t
1
2
cos
-
1
2
x
1
+
x
2
+
sin
-
1
1
-
y
2
1
+
y
2
=
c
o
t
1
2
cos
-
1
2
tan
α
1
+
tan
2
α
+
sin
-
1
1
-
tan
2
β
1
+
tan
2
β
=
c
o
t
1
2
cos
-
1
s
i
n
2
α
+
sin
-
1
cos
2
β
=
c
o
t
1
2
π
2
-
sin
-
1
s
i
n
2
α
+
π
2
-
cos
-
1
cos
2
β
=
c
o
t
1
2
π
-
sin
-
1
sin
2
α
+
cos
-
1
cos
2
β
S
i
n
c
e
2
α
∈
-
π
2
,
π
2
a
n
d
2
β
∈
(
0
,
π
2
]
T
h
e
r
e
f
o
r
e
,
sin
-
1
sin
2
α
=
2
α
a
n
d
cos
-
1
cos
2
β
=
2
β
=
c
o
t
1
2
π
-
2
α
+
2
β
=
c
o
t
π
2
-
α
+
β
=
tan
α
+
β
S
i
n
c
e
tan
α
=
x
a
n
d
tan
β
=
y
,
t
h
e
n
α
=
tan
-
1
x
a
n
d
β
=
tan
-
1
y
=
tan
tan
-
1
x
+
tan
-
1
y
=
tan
tan
-
1
x
+
y
1
-
x
y
=
x
+
y
1
-
x
y
Suggest Corrections
0
Similar questions
Q.
Find the value of
t
a
n
1
2
[
s
i
n
−
1
2
x
1
+
x
2
+
c
o
s
−
1
1
−
y
2
1
+
y
2
]
|
x
|
<
1
,
y
>
0
a
n
d
x
y
<
1
Q.
Find the value of the following:
t
a
n
1
2
[
s
i
n
−
1
2
x
1
+
x
2
+
c
o
s
−
1
1
−
y
2
1
+
y
2
]
,
|
x
|
<
1
,
y
>
0
a
n
d
x
y
<
1
Q.
Find the value of the following:
tan
1
2
[
sin
−
1
2
x
1
+
x
2
+
cos
−
1
1
−
y
2
1
+
y
2
]
,
|
x
|
<
1
,
y
<
0
and
x
y
<
1
.
Q.
Find the value of
t
a
n
1
2
[
s
i
n
−
1
2
x
1
+
x
2
+
c
o
s
−
1
1
−
y
2
1
+
y
2
]
|
x
|
<
1
,
y
>
0
a
n
d
x
y
<
1
Q.
If
cos
−
1
(
2
x
−
1
−
x
2
)
+
sin
−
1
(
y
)
=
0
then the value of
x
2
+
y
2
+
x
y
is equal to
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Extrema
MATHEMATICS
Watch in App
Explore more
First Derivative Test for Local Maximum
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app