wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

15:

15. If tan A & tan B are the roots of the quadratic equation, ax2 + bx + c =0 then evaluate a sin2 (A + B) + b sin (A + B). cos (A + B) + c cos2 (A + B).

Open in App
Solution

ax2+bx+c=0Since tan A and tan B are roots of the above equationtanA+tanB=-batanA tanB=catanA+B=tan A+tan B1-tan A tan B=-ba1-ca=-baa-ca=bac-aa=bc-aa sin2A+B+b sin A+B cos A+B+c cos2 A+B=cos2 A+Ba tan2A+B+b tan A+B+c=a tan2A+B+b tan A+B+csec2 A+BUse sec2x=1+tan2x=a tan2A+B+b tan A+B+c1+tan2 A+B=a bc-a2+b bc-a+c1+bc-a2=ab2c-a2+b2c-a+c1+b2c-a2=ab2c-a2+b2c-ac-a2+cc-a2c-a2c-a2+b2c-a2=ab2+b2c-a+cc-a2c-a2+b2=ab2+b2c-ab2+cc2+a2-2acc2+a2-2ac+b2=b2c+cc2+a2-2acc2+a2-2ac+b2=cb2+c2+a2-2acc2+a2-2ac+b2=cc2+a2-2ac+b2c2+a2-2ac+b2=c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon