We have,
√x+y+√y−x=c ……… (1)
On differentiating above equation w.r.t x, we get
12√x+y×(1+dydx)+12√y−x×(dydx−1)=0
12√x+y+dydx12√x+y+12√y−xdydx−12√y−x=0
12(1√x+y+1√y−x)dydx=12(1√y−x−1√x+y)
(√y−x+√x+y√x+y√y−x)dydx=(√x+y−√y−x√x+y√y−x)
dydx=(√x+y−√y−x√x+y+√y−x)
dydx=(√x+y−√y−x√x+y+√y−x)×(√x+y−√y−x√x+y−√y−x)
dydx=(√x+y−√y−x)2(√x+y)2−(√y−x)2
dydx=(x+y+y−x−2√x+y×√y−x)x+y−y+x
dydx=(2y−2√y+x×√y−x)2x
dydx=(y−√y2−x2)x ……… (2)
On differentiating above equation w.r.t x, we get
d2ydx2=x(dydx−(12√y2−x2×(2ydydx−2x)))−(y−√y2−x2)×1x2
d2ydx2=x(dydx−(1√y2−x2×(ydydx−x)))−(y−√y2−x2)x2
From equation (2), we get
d2ydx2=x⎛⎜ ⎜⎝⎛⎜ ⎜⎝(y−√y2−x2)x⎞⎟ ⎟⎠−⎛⎜ ⎜⎝1√y2−x2×⎛⎜ ⎜⎝y⎛⎜ ⎜⎝(y−√y2−x2)x⎞⎟ ⎟⎠−x⎞⎟ ⎟⎠⎞⎟ ⎟⎠⎞⎟ ⎟⎠−(y−√y2−x2)x2
d2ydx2=⎛⎜ ⎜⎝(y−√y2−x2)−⎛⎜ ⎜⎝x√y2−x2×⎛⎜ ⎜⎝y(y−√y2−x2)−x2x⎞⎟ ⎟⎠⎞⎟ ⎟⎠⎞⎟ ⎟⎠−(y−√y2−x2)x2
d2ydx2=(y−√y2−x2)−⎛⎜ ⎜⎝y(y−√y2−x2)−x2√y2−x2⎞⎟ ⎟⎠−(y−√y2−x2)x2
d2ydx2=−⎛⎜ ⎜⎝(y2−y√y2−x2)−x2√y2−x2⎞⎟ ⎟⎠x2
d2ydx2=x2−y2+y√y2−x2x2√y2−x2
Hence, this is the answer.