wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

State and explain fouriers theorem determine the coefficient of fouriers series derive the formula

Open in App
Solution

A series of sines and cosines of an angle and its multiples of the form of a02 + a1 cos x + a2 cos 2x + a3 cos3x + .....+an cos nx + ....b1sin x + b2 sin 2x + .....+bnsin nx + ......=a02 + n=1an cos nx + n=1bn sin nxis called Fourier Series where a0, a1, a2,.....an,....b1, b2,....bn,.... are constants.DETERMINATION OF FOURIER COEFFICIENTS :fx = a02 + a1 cos x + a2 cos 2x + a3 cos3x + .....+an cos nx + ....b1sin x + b2 sin 2x + .....+bnsin nx + ...... ----1To find a0 : Integrating both sides of 1 from x = 0 to x = 2π, we get 02πfxdx =a02 02πdx+a102πcos x dx+a202πcos 2x dx +...+an 02πcos nxdx+...+b102πsin x dx+b202πsin 2x dx +...+bn 02πsin nxdx + ...02πfxdx =a02 02πdx+ 0 + 0 +...0+...+0+0+......+0+..... as, 02π cos nx dx = 02π sin nx dx = 002πfxdx =a02x02π02πfxdx =a022πa0 = 1π02πfxdx To find an : Multiply each side of 1 by cos nx and Integrating both sides of 1 from x = 0 to x = 2π, we get02πfx cos nx dx =a02 02πcos nx dx+a102πcos nx .cosx dx+ ...+an 02πcos2nx dx+...+b102πcos nx sin x dx+b202πcos nx sin 2x dx +...+bn 02πcosnx sin nx dx + ...=a02×0+a1×0+....+an 02πcos2nx dx + ....+b1×0+b2×0+.......+bn×0+.....=an 02πcos2nx dx as, 02π cos mx. cos nx dx = 02π sin mx. cos nx dx = 02πcos nx sin nx dx = 0=an02π 1 + cos 2nx2 dx=an2x + sin 2nx2n02π=an22π + sin 42n - 0=an22π+0 - 0=anπSo, 02πfx cos nx dx = anπan = 1π02πfx cos nx dxTo find bn :Multiply each side of 1 by sin nx and Integrating both sides of 1 from x = 0 to x = 2π, we get02πfx sin nx dx =a02 02πsin nx dx+a102πsin nx .cosx dx+ ...+an 02πsin nx cosnx dx+...+b102πsin nx sin x dx+b202πsin nx sin 2x dx +...+bn 02π sin2nx dx + ...=a02×0+a1×0+....+an ×0 + ....+b1×0+b2×0+.......+bn02π sin2nx dx+.....=bn 02πsin2nx dx as, 02π cos mx. cos nx dx = 02π sin mx. cos nx dx = 02πcos nx sin nx dx = 0=bn02π 1 - cos 2nx2 dx=bn2x - sin 2nx2n02π=bn22π - sin 42n - 0=bn22π-0 - 0=bnπSo, 02πfx sin nx dx = bnπbn = 1π02πfx sin nx dx

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Continuity in an Interval
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon