wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

State and prove a multinomial theorem.

Open in App
Solution

For non negative integers b1,b2,.....bk such that k1=1bi=n, the multinomial coefficient is (nb1,b2,b3,.....bk)=n!b1!b2!b3!.....bk!
For k=2
(nb1,b2)=n!b1!b2!=n!b1!(nb1)!=(nb1)
Theorem:
For positive integers k and non negative integer n,
(x1+x2+...+xk)n=b1+b2+b3+.....+bk=n(nb1b2b3.....bk)kj=1xbjj
The number of terms of this sum are given by (n+k1n)
Theorem:
When k=1 result is true, when k=2 result in binomial theorem, Assume k3 and the result is true for k=p. when k=P+1
(x1+x2+x3.....+xp+xp+1)n=(x1+x2+...+xp1+(xp+xp+1))n
b1+b2+.....+bp1+B=n(nb1,b2,.....bp1,B)p1j=1xbjj×(xp+xp+1)B
By binomial theorem,
b+1+b2+....+bp+1=n(nb1,b2,.....bp1,B)p10=1xbjj×bp+bp+1=B(Bbp)xbppxbp+1p+1
b1+b2+.....+bp+1=n(nb1,b2,....bp+1)k0=1xbjj.

1190256_1265379_ans_aeb1a0363cb242989fcf04d570024ffd.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon