For non negative integers b1,b2,.....bk such that k∑1=1bi=n, the multinomial coefficient is (nb1,b2,b3,.....bk)=n!b1!b2!b3!.....bk!
For k=2
(nb1,b2)=n!b1!b2!=n!b1!(n−b1)!=(nb1)
Theorem:
For positive integers k and non negative integer n,
(x1+x2+...…+xk)n=∑b1+b2+b3+.....+bk=n(nb1b2b3.....bk)k∏j=1xbjj
The number of terms of this sum are given by (n+k−1n)
Theorem:
When k=1 result is true, when k=2 result in binomial theorem, Assume k≥3 and the result is true for k=p. when k=P+1
(x1+x2+x3.....+xp+xp+1)n=(x1+x2+...…+xp−1+(xp+xp+1))n
∑b1+b2+.....+bp−1+B=n(nb1,b2,.....bp−1,B)p−1∏j=1xbjj×(xp+xp+1)B
By binomial theorem,
∑b+1+b2+....+bp+1=n(nb1,b2,.....bp−1,B)p−1∏0=1xbjj×∑bp+bp+1=B(Bbp)xbppxbp+1p+1
∑b1+b2+.....+bp+1=n(nb1,b2,....bp+1)k∏0=1xbjj.