The proof is obtained by principal of mathamatical induction
let the given statement be
P(n):(a+b)n=nC0an+nC1an−1b+nC2an−2b2+.....+nCn−1a.bn−1+nCnbn
for n=1
p(1):(a+b)1=1C0a1+1C1b1=a+b
thus p(1) is true.
suppose p(k) is true for some positive integer k,
(a+b)k=kC0ak+kC1ak−1b+kC2ak−2b2+.....+kCkbk
we shall proove that P(k+1) is also true,
(a+b)k+1=k+1C0ak+1+k+1C1akb+k+1C2ak−1b2+...+k+1Ck+1bk+1
now
(a+b)k+1=(a+b)(a+b)k
=(a+b)(kC0ak+kC1ak−1b+kC2ak−2b2+...+kCk−1abk−1+kCkbk)......(1)
=kC0ak+1+kC1akb+kC2ak−1b2+...+kCk−1a2bk−1+kCkabk+kC0akb+kC1ak−1b2+kC2ak−2b3
+...+kCk−1abk+kCkbk+1
=kC0ak+1+(kC1+kC0)akb+(kC2+kC1)ak−1b2+...+(kCk+kCk−1)abk+kCkbk+1
=k+1C0ak+1+k+1C1akb+k+1C2ak−1b2+...+k+1Ckabk+k+1Ck+1bk+1
(usingk+1C0=1,kCr+kCr−1=k+1Cr,kCk=1=k+1Ck+1).
Thus, it has been proved that P (k + 1) is true whenever P(k) is true. Therefore, by principle of mathematical induction, P(n) is true for every positive integer n.