Consider |z1+z2|2=(z1+z2)(¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯z1+z2) (since z¯¯¯z=|z|2
=(z1+z2)(¯¯¯¯¯z1+¯¯¯¯¯z2)
=(z1¯¯¯¯¯z1+z1¯¯¯¯¯z2+z2¯¯¯¯¯z1+z2¯¯¯¯¯z2)
=|z1|2+z1¯¯¯¯¯z2+¯¯¯¯¯¯¯¯¯z1¯¯¯¯¯z2|z2|2
=|z1|2+|z2|2+2.Re(z1¯¯¯¯¯z2) since z1+z2=2Re(z)
≤|z1|2+|z2|2+2∣∣z1¯¯¯¯¯z2∣∣
≤|z1|2+|z2|2+2|z1||z2|
≤(|z1+z2|)2
Taking positive square root both sides
|z1+z2|≤|z1|+|z2|