Statement:If a line is drawn parallel to one side of a triangle to intersect the other two side in distinct points, the other two sides are divided in the same ratio.
To prove:ADDB=AEEC
Construction:Join BE and CD.Draw DM⊥AC and EN⊥AB
Proof:
Now, ar(△ADE)=12×AD×EN ......(1)
ar(△BDE)=12×DB×EN ......(2)
ar(△ADE)=12×AE×DM ......(3)
ar(△DEC)=12×EC×DM ......(4)
Divide (1) and (2)
ar(△ADE)ar(△BDE)=12×AD×EN12×DB×EN
ar(△ADE)ar(△BDE)=ADDB ..(5)
Divide (3) and (4)
ar(△ADE)ar(△DEC)=12×AE×DM12×EC×DM
ar(△ADE)ar(△DEC)=AEEC ..(6)
Now, △BDE and △DEC are on the same base DE and between the same parallel lines BC and DE
∴ar(△BDE)=ar(△DEC)
Hence,ar(△ADE)ar(△DEC)=ar(△ADE)ar(△BDE)
⇒ADDB=AEEC from (5) and (6)
Hence proved.