The correct option is A True
α=3+√52
1α=23+√5
=2(3−√5)(3+√5)(3−√5)
=2(3−√5)32−(√5)2
=2(3−√5)9−5
=2(3−√5)4
=3−√52
Now,
(α+1α)2=α2+1α2+2×α×1α
=>α2+1α2=(α+1α)2−2
Now, putting the values of α and 1α, we get,
α2+1α2=(3+√52+3−√52)2−2
=(3+√5+3−√52)2−2
=(62)2−2
=(3)2−2
=9−2
=7