The correct option is A True
Let f(x)=cos2x+3sinx
=1−2sin2x+3sinx
=1−2[(sinx−34)2−916]
=178−2(sinx−34)2
Now f(x) is max when, (sinx−34)2 is min i.e., when sinx−34=0 for sinx=34
which is possible.
max. f(x)=178
Also min-value of (sinx−34)2 is
(−1−34)2
i.e.4916
∴min.f(x)=(178)−(498)=−4
−4≤cos2x+3sinx≤178