Let's try to find out 10150−9950 in terms of remaining term i.e.
10150−9950=(100+1)50−(100−1)50
=(C0.10050+C1.10049+C2.10048+......)
=(C0.10050−C1.10049+C2.10048−......)
=2[C1.10049+C3.10047+.........]
=2[50.10049+C3.10047+.........]
=10050+2[C3.10047+............]>10050
⇒10150>9950+10050