A1,A2,A3...An are the vertices of a regular polygon of n sides. |OA1|=1. Then,
|A1A2||A1A3|....|A1An|=n.
Open in App
Solution
From part (i), |A1Ar|=|z1|∣∣1−e2(r−1)πi/n∣∣ =∣∣1−e2(r−1)πi/n∣∣[∵|z1|=1] Hence |A1A2|.|A1A3|......|A1An| =∣∣1−e2πi/n∣∣∣∣1−e4πi/n∣∣.......∣∣1−e2(n−1)πi/n∣∣ ...(1) Since e2πi/n,e4πi/n,.....e2(n−1)πi/n are the n-1 imaginary, nth roots of unity, we have the identity zn−1≡(z−1)(z−e2πi/n)(z−e4πi/n)......(z−e2(n−1)πi/n) or zn−1z−1≡(z−e2πi/n)(z−e4πi/n)......(z−e2(n−1)πi/n) or 1+z+z2+....+zn−1≡(z−e2πi/n)......(z−e2(n−1πi/n)) Putting z=1 in the above identity, we get n=(1−e2πi/n)(1−e4πi/n).....(1−e2(n−1)πi/n) Hence n=|n|=∣∣1−e2πi/n∣∣∣∣1−e4πi/n∣∣......∣∣1−e2(n−1)πi/n∣∣ ...(2) ∴ From (1) and (2), we get ∴|A1A2|.|A2A3|⋯|A1An|=n.