wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

State true or false
(a−2b+5c)(a−b)−(a−b−c)(2a+3c)+(6a+b)(2c−3a−5b)=19ca−37ab−19a2

A
True
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
False
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is B False
We solve the given expression (a2b+5c)(ab)(abc)(2a+3c)+(6a+b)(2c3a5b)

(a2b+5c)(ab)(abc)(2a+3c)+(6a+b)(2c3a5b)=[(ab)(a2b+5c)][(2a+3c)(abc)]+[(6a+b)(2c3a5b)]=[a(a2b+5c)b(a2b+5c)][2a(abc)+3c(abc)]+[6a(2c3a5b)+b(2c3a5b)]=(a22ab+5acab+2b25bc)(2a22ab2ac+3ac3bc3c2)+(12ac18a230ab+2bc3ab5b2)=(a2+2b23ab+5ac5bc)(2a23c22ab+ac3bc)+(18a25b2+12ac33ab+2bc)=19a23b23c238ab+18ac6bc

Therefore, (a2b+5c)(ab)(abc)(2a+3c)+(6a+b)(2c3a5b)=19a23b23c238ab+18ac6bc

Hence, (a2b+5c)(ab)(abc)(2a+3c)+(6a+b)(2c3a5b)=19ca37ab19a2 is false.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Appendicular Skeleton
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon