cosnα−ncosn−1αcosα+n(n−1)2!cosn−2αcos2α+⋯(n+1) terms=(−1)n/2sinnα , when n is even,=0 when n is odd. Type 1 for true and 0 for false
Open in App
Solution
The given series is cosins series as it has multiple angles with cos. For convenience sake put cosα=a ∴C=an−nan−1cosα+n(n−1)2!an−2cos2α+⋯ S=−nan−1sinα+n(n−1)2!an−2sin2α+⋯ Note: We have changed cosines of multiple angles with sines of multiple angles only. ∴C+iS=an−nan−1eia+n(n−1)2!an−2e2iα+⋯ C+iS is of the form of Binomial expansioln =(a−eiα)n=[cosα−(cosα+isinα)]n =(−1)ninsinnα=(−1)n/2sinnα if n is even. =purely imaginary if n is odd. Equating real parts, ∴C=(−1)n/2sinnα, when n is even =0 when n is odd.