We can compare two complex numbers when they are purely real.
Otherwise, comparison of complex numbers has no meaning.
Hence, the given statement is false.
Method 1: Algebraic Method
Assuming a non-zero complex
number as
z=|z|(cosθ+i sinθ)
Multiplying
z by
−i, we get
−iz=−i|z|(cosθ+isinθ)
⇒−iz=|z|(−icosθ−i2sinθ)
⇒−iz=|z|(sinθ−icosθ) [∵i2=−1]
⇒−iz=|z|(cos(π2−θ)−isin(π2−θ))
⇒−iz=|z|(cos(θ−π2)+isin(θ−π2))
Therefore, arg
(z)=θ and
arg
(−iz)=θ−π2,
so
z is rotated by
π2 but in clockwise direction.
Hence, the given statement is false.
Method 2 : Geometrical Method
Assuming a non-zero complex
number as
z=x+iy
Taking
x,y>0
Multiplying
z by
−i, we get
−iz=−i(x+iy)=−ix−i2y
⇒−iz=y−ix [∵i2=−1]
Plotting
(x,y) and
(y,−x) on Argand plane.
Now,
OA=√x2+y2,OB=√y2+x2,
AB=√(x−y)2+(y+x)2=√2x2+2y2
We can see that,
OA2+OB2=AB2
Therefore,
∠AOB=π2, but the rotation is in clockwise direction.
Hence, the given statement is false.
We know that,
|a−b|≤|a|+|b|
Taking
a=z,b=z−1
⇒|z−(z−1)|≤|z|+|z−1|
⇒|z|+|z−1|≥1
So, the minimum value of
|z|+|z−1| is
1.
Hence, the given statement is True.
Finding the required locus.
Given :
|z−1|=|z−i|
Let
z=x+iy, then
|x+iy−1|=|x+iy−i|
⇒|(x−1)+iy|=|x+i(y−1)|
⇒√(x−1)2+y2=√x2+(y−1)2
Squaring on both sides, we get
⇒x2−2x+1+y2=x2+y2−2y+1
⇒y=x
Locus is a line, whose slope is
m1=1
Checking the perpendicularity of the lines.
Slope of the line joining points
(1,0) and
(0,1)
m2=0−11−0=−1
As,
m1⋅m2=−1, so both lines are perpendicular.
Hence, the given statement is True.
Given:
z≠0 and
Re(z)=0
So,
z=iy,y≠0
Now,
z2=(iy)2=i2y2=−y2
[∵i2=−1]
Therefore,
Im(z2)=0
Hence, the given statement is True.
Given:
|z−4|<|z−2|
Let
z=x+iy
⇒|x−4+iy|<|x−2+iy|
⇒√(x−4)2+y2<√(x−2)2+y2
Squaring on both sides, we get
⇒(x−4)2+y2<(x−2)2+y2
⇒x2+16−8x<x2+4−4x
⇒4x>12
∴x>3
Hence, the above statement is true.
Given:
|z1+z2|=|z1|+|z2|
Squaring on both sides, we get
⇒|z1+z2|2=|z1|2+|z2|2+2|z1||z2|
⇒|z1|2+|z2|2+2Re(z1¯¯¯¯¯z2)=|z1|2+|z2|2+2|z1||z2|
{∵|z1+z2|2=|z1|2+|z2|2+2Re(z1¯¯¯¯¯z2)}
⇒2Re(z1¯¯¯¯¯z2)=2|z1||z2|
⇒Re(z1¯¯¯¯¯z2)=|z1||z2| ...
(1)
Assuming
z1=|z1|(cosα+isinα),
z2=|z2|(cosβ+isinβ)
z1¯¯¯¯¯z2=|z1||z2|(cosα+isinα)(cosβ−isinβ)
⇒z1¯¯¯¯¯z2=|z1||z2|×[cosαcosβ−i2sinαsinβ+i(sinαcosβ−cosαsinβ)]
⇒z1¯¯¯¯¯z2=|z1||z2|[cos(α−β)+isin(α−β)]
[∵i2=−1]
From equation
(1), we get
⇒|z1||z2|cos(α−β)=|z1||z2|
⇒cos(α−β)=1
⇒α−β=0
⇒α=β
Now,
z1−z2=|z1|(cosα+isinα)−|z2|(cosβ+isinβ)
⇒z1−z2=(|z1|−|z2|)(cosα+isinα)
[∵α=β]
Therefore, arg
(z1−z2)=α=β,
which is not always zero.
Hence, the given statement is False.
Any general complex number is of
form
z=x+iy, x,y∈R
2 is a complex number because
x=2,y=0 which satisfy the definition of complex numbers.
Hence, the given statement is False.