The correct option is
B False
cos(2π7)+cos(4π7)+cos(6π7)
Multiply and divide by sin(π7)
=sin(π7)cos(2π7)+sin(π7)cos(4π7)+sin(π7)cos(6π7)sin(π7)
=sin(π7−2π7)+sin(π7+2π7)+sin(π7−4π7)+sin(π7+4π7)+sin(π7−6π7)+sin(π7+6π7)2sinπ7
=sin(−π7)+sin(3π7)+sin(−3π7)+sin(5π7)+sin(−5π7)+sin(7π7)2sinπ7
=−sin(π7)+sin(3π7)−sin(3π7)+sin(5π7)−sin(5π7)+sin(7π7)2sinπ7
=−sin(π7)+sinπ2sinπ7
=−12
The given statement is false.