wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

State true or false.
If A+B+C=π then sin3Acos(BC)+sin3Bcos(CA)+sin3Ccos(AB)=3

A
True
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
False
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is B False
We know that A+B+C=π
A=π(B+C)

LHS=sin3Acos(BC)+sin3Bcos(CA)+sin3Ccos(AB)

=sin2AsinAcos(BC)+sin2BsinBcos(CA)+sin2CsinCcos(AB)

=sin2Asin(π(B+C))cos(BC)+sin2Bsin(π(C+A))cos(CA)+sin2Csin(π(A+B))cos(AB)

=12sin2A×2sin(π(B+C))cos(BC)+12sin2B×2sin(π(C+A))cos(CA)+12sin2C×2sin(π(A+B))cos(AB)

=12sin2A(sin2B+sin2C)+12sin2B(sin2C+sin2A)+12sin2C(sin2A+sin2B)

=12sin2A(2sinBcosB+2sinCcosC)+12sin2B(2sinCcosC+2sinAcosA)+12sin2C(2sinAcosA+2sinBcosB)

=sin2A(sinBcosB+sinCcosC)+sin2B(sinCcosC+sinAcosA)+sin2C(sinAcosA+sinBcosB)

=sinAsinBsin(A+B)+sinBsinCsin(B+C)+sinCsinAsin(C+A)

=3sinAsinBsinC

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon