The correct option is
B False
We know that A+B+C=π
∴A=π−(B+C)
LHS=sin3Acos(B−C)+sin3Bcos(C−A)+sin3Ccos(A−B)
=sin2AsinAcos(B−C)+sin2BsinBcos(C−A)+sin2CsinCcos(A−B)
=sin2Asin(π−(B+C))cos(B−C)+sin2Bsin(π−(C+A))cos(C−A)+sin2Csin(π−(A+B))cos(A−B)
=12sin2A×2sin(π−(B+C))cos(B−C)+12sin2B×2sin(π−(C+A))cos(C−A)+12sin2C×2sin(π−(A+B))cos(A−B)
=12sin2A(sin2B+sin2C)+12sin2B(sin2C+sin2A)+12sin2C(sin2A+sin2B)
=12sin2A(2sinBcosB+2sinCcosC)+12sin2B(2sinCcosC+2sinAcosA)+12sin2C(2sinAcosA+2sinBcosB)
=sin2A(sinBcosB+sinCcosC)+sin2B(sinCcosC+sinAcosA)+sin2C(sinAcosA+sinBcosB)
=sinAsinBsin(A+B)+sinBsinCsin(B+C)+sinCsinAsin(C+A)
=3sinAsinBsinC