The correct option is
A True
cos2α+cos2β+cos2γ=1+2cosαcosβcosγ
⇒ cos2α+cos2β+cos2γ−1=2cosαcosβcosγ
L.H.S=cos2α+cos2β+cos2γ−1
=cos2α+cos2β−1(1−cos2γ)
=cos2α+cos2β−sin2γ
=cos2α+cos2β−sin2(α+β) [ Since, α+β=γ ]
=cos2α+cos2β−[sin2αcos2β+cos2αsin2β+2sinαcosαsinβcosβ
=cos2α(1−sin2β)+cos2β(1−sin2α)−2sinαcosαsinβcosβ
=cos2αcos2β+cos2βcos2α−2sinαcosαsinβcosβ
=2cos2αcos2β−2sinαcosαsinβcosβ
=2cosαcosβ[cosαcosβ−sinαsinβ]
=2cosαcosβcos(α+β)
=2cosαcosβcosγ
=R.H.S
Hence, we have proved that, cos2α+cos2β+cos2γ−1=2cosαcosβcosγ