The correct option is
B False
We know that cos2θ=1−tan2x1+tan2x
⇒cosnx=secθ
⇒cosnx=1cosθ
⇒1−tan2nx21+tan2nx2=1+tan2θ21−tan2θ2
Using componendo-dividendo rule,
⇒1−tan2nx2−1−tan2nx21−tan2nx2+1+tan2nx2=1+tan2θ2−1+tan2θ21+tan2θ2+1−tan2θ2
⇒−2tan2nx22=2tan2θ22
⇒−tan2nx2=tan2θ2