The correct option is
B False
(1+sin2θ)=3sinθcosθ
⇒2+2sin2θ=3×2sinθcosθ
⇒2+1−cos2θ=3sin2θ
⇒3−cos2θ=3sin2θ
⇒3−1−tan2θ1+tan2θ=3×2tanθ1+tan2θ
⇒3+3tan2θ+1−tan2θ1+tan2θ=6tanθ1+tan2θ
⇒3+3tan2θ+1−tan2θ=6tanθ
⇒4+2tan2θ−6tanθ=0
⇒2tan2θ−6tanθ+4=0
⇒tan2θ−3tanθ+2=0
⇒(tanθ−1)(2tanθ−1)=0
⇒tanθ=1 or 12
Hence the given statement is false.