The correct option is A True
Let p(x)=ax4+bx3+cx2+dx+e
Given, x2−1 is factor of p(x).
i.e(x−1)(x+1) is factor of p(x)
⇒(x−1),(x+1) are factor of p(x)
∴p(1)=0 and p(−1)=0
⇒p(1)=a+b+c+d+e=0 ...(i)
⇒p(−1)=a−b+c−d+e=0 ...(ii)
From (ii), we get
a+c+e=b+d
Putting this value in (i),
⇒(a+c+e)+b+d=0
⇒(b+d)+b+d=0
⇒2(b+d)=0
⇒b+d=0
∴a+c+e=b+d=0