The correct option is
B False
y=√1−x1+x
⇒y=√1−x√1+x×√1−x√1−x
⇒y=1−x√1−x2
Squaring both sides, we get
⇒(1−x2)y2=(1−x)2
Differentiating w.r.t x both sides,
⇒(1−x2)2ydydx+y2(−2x)=−2(1−x)
Dividing both sides by 2 we get
⇒(1−x2)ydydx−xy2+(1−x)=0
Hence the given statement is false.