The correct option is
A True
Given a Square ABCD whose diagonals intersect at O.
All angles of a square are right angles & a diagonal of a square bisects the angles.
So ∠ABC=90o&∠OBP=90o2=45o
Also given OB=BP.
In isosceles △ BOP, ∠BOP=∠BPO[ Base angles of a isosceles triangle are equal ]
So in △ BOP, ∠OBP+∠BOP+∠BPO=180o
⇒2∠POB=180o−45o=135o
⇒∠POB=1352
⇒∠POB=67.5o
We know that in a square diagonals are perpendicular bisectors of each other.
So ∠COB=90o⇒∠POC+∠POB=90o⇒∠POC+67.5o=90o⇒∠POC=90o−67.5o⇒∠POC=22.5o