The correct option is A True
Given: Acute angled △ABC, AD⊥BC,
Now, in △ADB,
AB2=AD2+BD2 (Pythagoras theorem)
⇒AD2=AB2−BD2 .....(I)
In △ADC,
AC2=AD2+DC2
⇒AD2=AC2−CD2 ....(II)
Equating (I) and (II), we get
AB2−BD2=AC2−CD2
AC2=AB2+CD2−BD2
AC2=AB2+(BC−BD)2−BD2 .....(BD+DC=BC)
AC2=AB2+BC2+BD2−2BC×BD−BD2
AC2=AB2+BC2−2BC×BD