The correct option is
A True
Given
cos2A2+cos2B2+cos2C2
=(1+cosA2)+(1+cosB2)+(1+cosC2)
=32+12(cosA+cosB+cosC)
=32+12[2cos(A+B2)cos(A−B2)+cosC]
=32+12[2cos(π−C2)cos(A−B2)+1−2sin2C2]
=32+12[1+2cos(π2−C2)cos(A−B2)−2sin2C2]
=32+12[1+2sin(C2)cos(A−B2)−2sin2C2]
=32+12[1+2sin(C2)(cos(A−B2)−sinC2)]
=32+12[1+2sin(C2)(cos(A−B2)−sinπ−(A+B)2)]
=32+12[1+2sin(C2)(cos(A−B2)−sin(π2−(A+B)2))]
=32+12[1+2sin(C2)(cos(A−B2)−cos(A+B2))]
=32+12[1+2sin(C2)(cos(A2−B2)−cos(A2+B2))]
=32+12[1+2sin(C2)(2sinA2sinB2)]
(∵cos(A−B)−cos(A+B)=2sinAsinB)
=32+12[1+4sinA2sinB2sinC2]
But 4sinA2sinB2sinC2=rR
Thus, given expression becomes,
=32+12+r2R
=2+r2R