wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

State true or false.
In any ΔABC, is the sum of cos2A2+cos2B2+cos2C2=2+r2R?

A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A True
Given cos2A2+cos2B2+cos2C2

=(1+cosA2)+(1+cosB2)+(1+cosC2)

=32+12(cosA+cosB+cosC)

=32+12[2cos(A+B2)cos(AB2)+cosC]

=32+12[2cos(πC2)cos(AB2)+12sin2C2]

=32+12[1+2cos(π2C2)cos(AB2)2sin2C2]

=32+12[1+2sin(C2)cos(AB2)2sin2C2]

=32+12[1+2sin(C2)(cos(AB2)sinC2)]

=32+12[1+2sin(C2)(cos(AB2)sinπ(A+B)2)]

=32+12[1+2sin(C2)(cos(AB2)sin(π2(A+B)2))]

=32+12[1+2sin(C2)(cos(AB2)cos(A+B2))]

=32+12[1+2sin(C2)(cos(A2B2)cos(A2+B2))]

=32+12[1+2sin(C2)(2sinA2sinB2)]
(cos(AB)cos(A+B)=2sinAsinB)

=32+12[1+4sinA2sinB2sinC2]

But 4sinA2sinB2sinC2=rR
Thus, given expression becomes,

=32+12+r2R

=2+r2R

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon