The correct option is
B False
sin2A+sin2B+sin2C
=(sin2A+sin2B)+sin2C
=2sin(2A+2B2)cos(2A−2B2)+2sinCcosC
=2sin(A+B)cos(A−B)+2sinCcosC
=2sin(π−C)cos(A−B)+2sinCcosC since
A+B+C=π
=2sinCcos(A−B)+2sinCcos(π−(A+B)) since A+B+C=π
=2sinC[cos(A−B)−cos(A+B)]
=2sinC[−2sin(A−B+A+B2)sin(A−B−A−B2)]
=−4sinC[sinAsin(−B)]
=4sinAsinBsinC
Hence the given statement is false.