Given ratio of angles of quadrilateral PQRS is 3:4:6:7
Let the angles of quadrilateral PQRS be 3x,4x,6x,7x, respectively.
We know, by angle sum property, the sum of angles of a quadrilateral is 360o.
⇒∠P+∠Q+∠R+∠S=360o
⇒3x+4x+6x+7x=360o
⇒20x=360o
⇒x=360o20
∴x=18o.
∴∠P=3x=3×18o=54o,
∠Q=4x=4×18o=72o,
∠R=6x=6×18o=108o
and ∠S=7x=7×18o=126o.
∴ The smallest angle =54o.
That is, the statement is false.
Hence, option B is correct.