Let ∣∣(¯¯¯z1−2¯¯¯z2)/(2−z1¯¯¯z2)∣∣=1 and |z2|≠1, where z1 and z2 are complex numbers, then |z1|=2.
Open in App
Solution
∣∣∣¯¯¯z1−2¯¯¯z22−z1¯¯¯z2∣∣∣=1 or ∣∣¯¯¯z1−2¯¯¯z2∣∣2=∣∣2−z1¯¯¯z2∣∣2 or (¯¯¯z1−2¯¯¯z2)(¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯z1−2¯¯¯z2)=(2−z1¯¯¯z2)(¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯2−z1¯¯¯z2) or (¯¯¯z1−2¯¯¯z2)(¯¯¯z1−2¯¯¯z2)=(2−z1¯¯¯z2)(2−z1¯¯¯z2) or z1¯¯¯z1−2¯¯¯z1z2−2z1¯¯¯z2+4z2¯¯¯z2=4−2¯¯¯z1z2−2z1¯¯¯z2+z1¯¯¯z1z2¯¯¯z2 or |z1|2+4|z2|2=4+|Z1|2|z2|2 or |z1|2−|z1|2|z2|2+4∣∣z2∣∣2−4=0 or |z1|2−(1−|z2|2)+4(|z2|2−1)=0 or |z2|2−1)(|z1|2−4)=0 or |z1|=2 (as |z2|≠1)