wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

State true or false:
ω is an imaginary root of unity.
(a+bω+cω2)3+(a+bω2+cω)3=(2abc)(2bac)(2cab).

Open in App
Solution

a+bω+cω2=x and a+bω2+cω=y. Then,
(a+bω+cω2)3+(a+bω2+cω)3=x3+y3=(x+y)(x+ωy)(x+ω2y)
Now,
x+y=(a+bω+cω2)+(a+bω2+cω)
=2a+b(ω+ω2)+c(ω+ω2)
=2abc
x+ωy=(a+bω+cω2)+ω(a+bω2+cω)=(1+ω)a+(1+ω)b+2ω2c
=ω2(2cab)
Similarly,
x+ω2y=ω(2bac)
(x+y)(x+bωy)(x+ω2y)
=ω3(2abc)(2cab)(2bac)
=(2abc)(2cab)(2bac)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Inequalities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon