State True or False:
On subtracting a2+ab+b2 from 4a2−3ab+2b2, the answer is 3a2−4ab+b2.
The correct option is A True
Consider a2+ab+b2 and 4a2−3ab+2b2. Now,
⇒4a2−3ab+2b2−(a2+ab+b2)
=4a2−3ab+2b2−a2−ab−b2
=4a2−a2+2b2−b2−3ab−ab
=(4−1)a2+(2−1)b2+(−3−1)ab
=3a2+b2−4ab
Since, 3a2+b2−4ab=3a2−4ab+b2, therefore, the given statement is true.