The correct option is
B False
Let P,Q,R & S be the points of intersection of the bisectors of ∠A,∠B,∠C&∠D respectively of parallelogram ABCD.
Since DS bisects ∠D & AS bisects ∠A so ∠DAB=2∠DAS&∠ADC=2∠ADS
Here ∠DAB+∠ADC=180∘ [ adjacent angles of the parallelogram=180∘]
⇒∠DAB+∠ADC=180∘
⇒2∠DAS+2∠ADS=180∘
⇒∠DAS+∠ADS=90∘ ---(1)
In △ASD,
∠DAS+∠ADS+∠ASD=180∘
⇒∠ASD+90∘=180∘ [ from (1) ] ⇒∠ASD=90∘
⇒∠PSR=90∘ [ ∠ASD&∠PSR are vertically opposite angles ]
Similarly it can be shown that ∠APB=∠SPQ=90∘,∠PQR=90∘&∠SRQ=90∘.
So in quadrilateral PQRS all interior angles are right angles.
Hence PQRS is a rectangle.