=(xy+yz+zx−x2−y2−z2)∣∣
∣
∣∣1zx−y2xy−z21xy−z2yz−x21yz−x2zx−y2∣∣
∣
∣∣
Applying R1→R1−R3 and R2→R2−R3
=(xy+yz+zx−x2−y2−z2)∣∣
∣
∣∣0zx−y2−yz+x2xy−z2−zx+y20xy−z2−yz+x2yz−x2−zx+y21yz−x2zx−y2∣∣
∣
∣∣
=(xy+yz+zx−x2−y2−z2)∣∣
∣
∣∣0(x−y)(x+y+z)(y−z)(x+y+z)0(x−z)(x+y+z)(y−x)(x+y+z)1yz−x2zx−y2∣∣
∣
∣∣
=(xy+yz+zx−x2−y2−z2)(x+y+z)2∣∣
∣
∣∣0(x−y)(y−z)0(x−z)(y−x)1yz−x2zx−y2∣∣
∣
∣∣
=(xy+yz+zx−x2−y2−z2)(x+y+z)2[(x−y)(y−x)−(x−z)(y−z)]
=(xy+yz+zx−x2−y2−z2)(x+y+z)2[xy+yz+zx−x2−y2−z2]
=(xy+yz+zx−x2−y2−z2)2(x+y+z)2
∴Δ=(xy+yz+zx−x2−y2−z2)2(x+y+z)2
∴Δ is divisible by (x+y+z) and quotient is (xy+yz+zx−x2−y2−z2)2(x+y+z)
The given statement is true.