The correct option is
A True
Let
z2=x2y2+y24x2−xy+y2x−34
Now, adding and subtracting 1 in z2, we get:
z2=(xy)2+(y2x)2−xy+y2x−34+1−1⇒z2=(xy)2+(y2x)2−1−xy+y2x+14⇒z2=(xy)2+(y2x)2−2(xy)(y2x)−xy+y2x+14(Replace1by(2xy)(y2x))⇒z2=(xy−y2x)2−(xy−y2x−14)(∵(a−b)2=a2+b2−2ab)
⇒z2=(p)2−(p−14)(Letxy−y2x=p)⇒z2=4p2−4p+14⇒z2=(2p−12)2⇒z=2p−12
⇒z=p−12⇒z=xy−y2x−12(∵p=xy−y2x)
Hence, the square root of x2y2+y24x2−xy+y2x−34 is xy−y2x−12.