The correct option is
A True
Given LHS=(x2+a2)7
∴LHS=(x2(1+a2x2))7
∴LHS=x14(1+a2x2)7
∴LHS=x14[1+7a2x2+7×62!(a2x2)2+7×6×53!(a2x2)3+7×6×5×44!(a2x2)4+7×6×5×4×35!(a2x2)5+7×6×5×4×3×26!(a2x2)6+7×6×5×4×3×2×17!(a2x2)7]
∴LHS=x14[1+7a2x2+21a4x4+35a6x6+35a8x8+21a10x10+7a12x12+a14x14]
∴LHS=x14+7a2x12+21a4x10+35a6x8+35a8x6+21a10x4+7a12x2+a14 (1)
RHS=(x7−21x5a2+35x3a4−7xa6)2+(7x6a−35x4a3+21x2a5−a7)2
∴RHS=[(x7−21x5a2)+(35x3a4−7xa6)]2+[(7x6a−35x4a3)+(21x2a5−a7)]2
∴RHS=(x7−21x5a2)2+(35x3a4−7xa6)2+2(x7−21x5a2)(35x3a4−7xa6)+(7x6a−35x4a3)2+(21x2a5−a7)2+2(7x6a−35x4a3)(21x2a5−a7)
∴RHS=(x7)2−2x7(21x5a2)+(21x5a2)2+(35x3a4)2−2(35x3a4)(7xa6)+(7xa6)2+2(35x10a4−7x8a6−735x8a6+147x6a8)+(7x6a)2−2(7x6a)(35x4a3)+(35x4a3)2+(21x2a5)2−2(21x2a5)(a7)+(a7)2+2(147x8a6−7x6a8−735x6a8+35x4a10)
∴RHS=x14−42x12a2+441x10a4+1225x6a8−490x4a10+49x2a12+2(35x10a4−742x8a6+147x6a8)+49x12a2−490x10a4+1225x8a6+441x4a10−42x2a12+a14+2(147x8a6−742x6a8+35x4a10)
∴RHS=x14−42x12a2+441x10a4+1225x6a8−490x4a10+49x2a12+70x10a4−1484x8a6+294x6a8+49x12a2−490x10a4+1225x8a6+441x4a10−42x2a12+a14+294x8a6−1484x6a8+70x4a10
∴RHS=x14+7x12a2+21x10a4+35x6a8+21x4a10+7x2a12+35x8a6+a14 (2)
From Equation (1) and (2),
(x2+a2)7=(x7−21x5a2+35x3a4−7xa6)2+(7x6a−35x4a3+21x2a5−a7)2