The correct option is
A True
△ABC∼△PQR [ Given ]
Draw,
AM⊥BC and
PN⊥QR⇒ ar(ABC)=12×BC×AM ---- ( 1 )
⇒ ar(PQR)=12×QR×PN ----- ( 2 )
Dividing ( 1 ) and ( 2 )
⇒ ar(ABC)ar(PQR)=12×BC×AM12×QR×PN
⇒ ar(ABC)ar(PQR)=BC×AMQR×PN ---- ( 3 )
In △ABM and △PQN
⇒ ∠B=∠Q [ As △ABC∼△PQR and angles of smilar triangles are equal ]
⇒ ∠M=∠N [ Both 90o ]
∴ △ABM∼△PQN [ By AA similarity ]
∴ ABPQ=AMPN [ Corresponding sides of similar triangles are proportional ] ----- ( 4 )
Substituting ( 4 ) in ( 3 ),
⇒ ar(ABC)ar(PQR)=BCQR×ABPQ ---- ( 5 )
Now,
△ABC∼△PQR [ Given ]
⇒ ABPQ=BCQR=ACPR
Putting in ( 5 )
⇒ ar(ABC)ar(PQR)=ABPQ×ABPQ=(ABPQ)2
Now, again using ABPQ=BCQR=ACPR
⇒ ar(ABC)ar(PQR)=(ABPQ)2=(BCQR)2=(ACPR)2