Prove that cotθ+cosecθ−1cotθ−cosecθ+1=cotθ+ cosecθ
(i) cosecθ+cotθcosecθ−cotθ=(cosecθ+cotθ)2=1+2cot2θ+2cosecθcotθ
(ii) secθ+tanθsecθ−tanθ=(secθ+tanθ)2=1+2tan2θ+2secθtanθ