The correct option is A True
|a|+|b|>5
where a=2x-1, b=3-xa+ive
⇒x>12, a-ive
⇒x<12 b+ive ⇒x<3,b−ive⇒x>3
Case I, a+ive, b+ive ∴x>12,x<3 and 2x−1+3−x>5
⇒x>3.
Contradictory results.Case II. a+ive, b-ive ∴x>12,x>3∴x>3
2x−1−(3−x)>5 or 3x>9
∴x>3∴xϵ[3,∞] ...(1)
Case III. a-ive, b+ivex<12,x<3∴x<12 and −(2x−1)+3−x>5⇒x<−13
∴x<12,x<−13⇒x<−13
∴xϵ[−∞,−13] ...(2)
Case IV. a-ive, b-ive. x<12,x>3 and −(2x−1)−(3−x)>5 or −x>7 or x<−7. Contradictory results.
∴xϵ[−∞,−13]∪[3,∞] from (1) and (2).