wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

State whether the given statement is true or false
If α+βγ=π,
then show that sin2α+sin2βsin2γ=2sinαsinβcosγ.

A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A True
sin2α+sin2βsin2γ=sin2α+(sin2βsin2γ)=sin2α+sin(β+γ)sin(βγ)=sin2α+sin(πα)sin(βγ)=sin2α+sinαsin2α=sinα(sinα+sin(βγ))=sinα(sin(π(β+γ))+sin(βγ))=sinα(sin(β+y)+sin(βγ))=sinα(2cosβcosγ)=2sinαsinβcosγ

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
De Moivre's Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon