wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

State whether the given statement is true or false
If xn+1=1+xn2, then cos(1x02x1x2x3...)(1<x0<1) is equal to x0

A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A True
Let x0=cosθ, then
x1=12(1+cosθ)=cosθ2,x2=cos(θ22),x3=cos(θ23) ...and so on
[1x02x1x2x3...]=sinθcosθ2cos(θ22)...cos(θ2n)...
=2sinθ2cosθ2cosθ2cos(θ22)...cos(θ2n)...=22sinθ22cosθ22cos(θ22)...cos(θ2n)...
=limn2nsinθ2ncosθ2n+1=limnθsinθ2nθ2n1cosθ2n+1=θ
cos(1x02x1x2x3...)=cosθ=x0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon