wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question


State whether the two lines in each of the following are parallel, perpendicular or neither.
(i) Through (5, 6) and (2, 3); through (9, −2) and (6, −5)
(ii) Through (9, 5) and (−1, 1); through (3, −5) and (8, −3)
(iii) Through (6, 3) and (1, 1); through (−2, 5) and (2, −5)
(iv) Through (3, 15) and (16, 6); through (−5, 3) and (8, 2).

Open in App
Solution

(i) Through (5, 6) and (2, 3); through (9, −2) and (6, −5)

Let m1 be the slope of the line joining (5, 6) and (2, 3) and m2 be the slope of the line joining (9, −2) and (6, −5).

m1=y2-y1x2-x1=3-62-5=-3-3=1 and m2=y2-y1x2-x1=-5+26-9=-3-3=1

Since, m1=m2

Therefore, the given lines are parallel.

(ii) Through (9, 5) and (−1, 1); through (3, −5) and (8, −3)

Let m1 be the slope of the line joining (9, 5) and (−1, 1) and m2 be the slope of the line joining (3, −5) and (8, −3).

m1=y2-y1x2-x1=1-5-1-9=-4-10=25 and m2=y2-y1x2-x1=-3+58-3=25

Since, m1=m2

Therefore, the given lines are parallel.

(iii) Through (6, 3) and (1, 1); through (−2, 5) and (2, −5).

Let m1 be the slope of the line joining (6, 3) and (1, 1) and m2 be the slope of the line joining (−2, 5) and (2, −5).

m1=y2-y1x2-x1=1-31-6=-2-5=25 and m2=y2-y1x2-x1=-5-52+2=-104=-52

Now, m1m2=25×-52=-1Since, m1m2=-1

Therefore, the given lines are perpendicular.

(iv) Through (3, 15) and (16, 6); through (−5, 3) and (8, 2).

Let m1 be the slope of the line joining (3, 15) and (16, 6) and m2 be the slope of the line joining (−5, 3) and (8, 2).

m1=y2-y1x2-x1=6-1516-3=-913 and m2=y2-y1x2-x1=2-38+5=-113

Now, m1m2=-913×-113=9169Since, m1m2-1 and m1m2

Therefore, the given lines are neither parallel nor perpendicular.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Straight Line
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon