∫x2(x2+1)(x2+4)
We will solve using partial fraction method
Let x2=y
∴x2(x2+1)(x2+4)=y(y+1)(y+4)
y(y+1)(y+4)=A(y+1)+B(y+4)
⇒y=A(y+4)+B(y+1)
When y=−1⇒A=−13
When y=−4⇒B=43
⇒y(y+1)(y+4)=−13(y+1)+43(y+4)
⇒x2(x2+1)(x2+4)=−13(x2+1)+43(x2+4)
Integrating both sides w.r.t. x , we get
∫x2(x2+1)(x2+4)dx=−13tan−1x+23tan−1(x2)+C