The correct option is A STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for STATEMENT-1
I) limx→0[x]{e1/x−1e1/x+1}
RHL=limx→0+[x](e1/x−1e1/x+1)
=limh→0[h](e1/h−1e1/h+1)
=limh→0[h](1−e−1/h1+e−1/h)
=0×1=0
LHL=limx→0−[x](e1/x−1e1/x+1)
=limh→0[−h](e−1/h−1e−1/h+1)
=−1×(−1)=1
Here, LHL≠RHL
Thus, given limit does not exist.
II) limx→0(e1/x−1e1/x+1)
RHL=limx→0+(e1/x−1e1/x+1)
=limh→0(e1/h−1e1/h+1)
=limh→0(1−e−1/h1+e−1/h)
RHL=1
LHL=limx→0−(e1/x−1e1/x+1)
=limh→0(e−1/h−1e−1/h+1)
LHL=−1
So, limx→0(e1/x−1e1/x+1) does not exist, but this cannot be taken as only reason for non-existence of limx→0[x](e1/x−1e1/x+1).