STATEMENT 1: In a ΔABC, cosA+cosB+cosC>1, then the nature of the triangle cannot be determined.
STATEMENT 2: In a ΔABC,cosA+cosB+cosC=1+4sinA2sinB2sinC2
cosA+cosB+cosC
=2cos(A+B2)cos(A−B2)−2sin2C2+1
=2sin(C2)cos(A−B2)−2sin2C2+1
=2sin(C2)[cos(A−B2)−sin(C2)]+1
=2sin(C2)[cos(A−B2)−cos(A+B2)]+1
=2sin(C2)[2sinA2sinB2]+1
=1+4sin(C2)sin(A2)sin(B2)
Now
cosA+cosB+cosC>1
⟹1+4sin(C2)sin(A2)sin(B2)>1
Or
4sin(C2)sin(A2)sin(B2)>0
Or
sin(C2)sin(A2)sin(B2)>0
Hence we cannot determine the nature of the triangle using this criterion only.