STATEMENT 1: In a ΔABC, if r1, r2, r3 are in H.P. then r2r=13
STATEMENT 2: In a ΔABC,1r1+1r2+1r3=2r
If r1,r2,r3 are in G.P then
2r2=1r1+1r32(s−b)Δ=(s−a)Δ+(s−c)Δ2s−2b=s−a+s−ca+c=2b......(i)
r2r=Δs−bΔs=ss−b
Substituting (i)
r2r=a+c+ba+c−br2r=2b+b2b−b=3
So statement (i) is false
1r1+1r2+1r3=s−aΔ+s−bΔ+s−cΔ=3s−a−b−cΔ=sΔ
So statement 2 is also false