The correct option is
B √55,−√52Given,
Sum of the zeros (S) =−32√5
Product of the zeros (P) =−12
The, the required polynomial is given,
p(x)=k(x2−Sx+P)
⇒p(x)=k(x2+32√5x−12)
⇒p(x)=k2√5(2√5x2+3x−√5)
where k is a non zero real number
Zeros of the polynomial are
p(x)=0
⇒k2√5(2√5x2+3x−√5)=0
⇒2√5x2+3x−√5=0
⇒2√5x2+5x−2x−√5=0
⇒√5x(2x+√5)−(2x+√5)=0
⇒(√5x−1)(2x+√5)=0
⇒x=1√5=√55 or x=−√52
Thus, the zeros are √55 and −√52