(312⋅22)+(522⋅32)+(732⋅42)+.........(2n+1n2(n+1)2)now(312⋅22)=(22−1212⋅22)=(112)−(122)(522⋅32)=(32−2222⋅32)=(112)−(132)∴sum=((112)−(122)+(122)−(132))+.......+[(1n2)−(1(n+1)2)]=1−(1(n+1)2)=(n2+2n(n+1)2)