The correct option is C 150a
300∑r=0arxr=(1+x+x2+x3)100
Clearly, 'ar' is the coefficient of xr in the expansion of (1+x+x2+x3)100
Replacing x by 1x in the given equation, we get
300∑r=0ar(1x)r=1x300(x3+x2+x+1)100
or, 300∑r=0arx300−r=(1+x+x2+x3)100
Here, ar represents the coefficients of x300−r in the expansion of (1+x+x2+x3)100.
Thus, ar=a300−r
Let I=300∑r=0r×ar
=300∑r=0(300−r)a300−r
=300∑r=0(300−r)ar
=300300∑r=0ar−300∑r=0rar
⇒2I=300a
or, I=150a