The correct option is
C 110050∑r=112r(2r−1)=50∑r=1(12r−1−12r)
=(1−12+13−14+........+199−1100)
=(1+12+13+14+.........+1100)−2(12+14+............+1100)
=∑r=11001r−(1+12+.....+150), i.e.,50∑r=11r=100∑r=511r
∴E=50∑r=1149+r−100∑r=511r
=[150+151+...........+199]−[151+152+............+1100]
=150−1100=2100−1100=1100⇒(C)