Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None
of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A We have ∑πm−1tan−1(2mm4+m2+2) =∑πm−1tan−1(2m1+(m2+m+1)(m2−m+1))=∑πm−1tan−1((m2+m+1)−(m2−m+1)1+(m2+m+1)(m2−m+1))=∑πm−1[tan−1(m2+m+1)−tan−1(m2−m+1)]=(tan−13−tan−1)+(tan−17−tan−13)+(tan−113−tan−17)+.....+[tan−1(n2+n+1)](tan−1(n2+n+1)−tan−1(n2+n2+n2+n)