The correct option is
A tan−1(n2+n+1)−π4n∑m=1tan−1(2mm4+m2+2) is equal toIn General formula for tan−1x=tan−1y is
tan−1(x±y1±xy)...(1)
Now, given summation is,
n∑m=1tan−1(2mm4+m2+2)=n∑m=1tan−1(2m1+(m4+m2+1))
Now, factorisation of. m4+m2+1 is
m4+m2+1=(m2+m+1)×(m2−m+1)
and difference between (m2−m+1) and
(m2−m+1) is 2m.
⇒n∑m=1tan−1((m2+m+1)−(m2−m+1)1+(m2+m+1)(m2−m+1))...(2)
Now, compare eqn(1) & eqn(2)
=n∑m−1tan−1(m2+m+1)−tan−1(m2∗m+1)
Now putting value from 1, 2, ...,n.
=tan−1(m2+1+1)−tan−1(12−1+1)+tan−1(22+2+1)
−tan−1(22−2+1)+...+tan2−1(n2+n+1)..tan−1(n2−n+1)
=tan−1(3)−tan−1(1)+tan−1(7)−tan−1(3)+...+tan−1(n2+n+1)−tan−1(n2−n+1)
here alternative terms will canceled and we are left with tan−1(n2+n+1)−tan−1(1)
So, tan−1(n2+n+1)−π4